

Holographic Switch for Data Centers

Post-Quantum Tek (PQT)

Data center switches:

Data centers contain a multitude of computers in racks, where they store information. When an external query arrives at the data center, such as an Amazon order, a Facebook post, or a credit card payment, the information is retrieved from computers in the appropriate racks and sent on to the intended recipient. The information is aggregated and routed using **switches** that direct the data where it needs to go.

Today's technology relies on **electronic switches**, even though the data is transported in the form of photons traveling in optical fibers. So, at each and every switch, the photons are converted into electrons during a detection process and a laser is turned on at the end of the correct receiving fiber to regenerate the signal into optical format and send it where it belongs.

This process of optics-electronics-optics (OEO) conversion uses a great deal of electricity, which costs data centers a lot of money. In 2014, data centers were **consuming 5% of the total US electrical energy** production: 200 TWh.¹ Furthermore, this trend is growing

exponentially due to new applications on cell phones, cloud computing, and the Internet of Things (IoT).

Optical switches:

Optical switches exist and are used today. However, the problem is their speed. The mirror takes $\sim 1/1,000$ th of a second to get reoriented, but the data arrive much faster (250 Mbps). This **prevents the use** of the current optical switch technology in most applications.

Optical switches based on current principles have reached their **physical limits** and it step is not possible to make them faster.

Holographic switches:

The holographic switch is the next generation of optical switch. It uses a new type of MEMS (micro-electro-mechanical system) chip with smaller mirrors, which make them **1,000 times faster than past technology.** Because the mirrors are smaller, light does not reflect from them, but gets diffracted. Diffraction is the same phenomenon that creates a hologram, hence the name for this new switch.

There are two added benefits to the mirrors being much smaller: 1) much lower voltage to move them, thus using less energy (reduces opex (operating

Optical switch prototype in Internet traffic simulator

expenses)) and 2) a single switch can have many more mirrors, so it can address more fibers, thereby reducing the total number of switches needed in the data center (**reduced capex (capital expenditures**).²

The holographic switch is agnostic to the data rate and the data format, making it future proof.

Where we are now:

The PQT team has already demonstrated the validity of the holographic switch. We have built several generations of prototypes and tested them in a controlled environment: a 3 rack data center in a Microsoft Research lab.³

The PQT holographic switch has been compared to other, current technologies and has demonstrated superior performance. The results are presented in the following table:

Technology		Port count	Loss	speed	Power
3D MEMS Calient/CrossFiber/ Gimmerglass	S	High (100s)	Low (3dB)	ms	High (45 W)
Micro-actuation Polatis/DirectLight	1	Moderate (100)	Low (3dB)	ms	Very high (128W)
LCoS (WSS) JDSU/Nistica/CoAdna		High (100s)	Low (3dB)	ms (300Hz)	Low (1W)
AWG/SOA NTT/Academia	$\mathbf{\Lambda}$	High (100s)	Moderate (6dB)	ns	Very high (50W)
Holographic with DLP Demonstrated	P	Very high (1000s)	Moderate (10dB)	ms (10kHz)	Low (1W)
Holographic with new MEMS		Very high (10,000s)	Low (3dB)	ns (10MHz)	Low (1W)

1. Patrick Thibodeau , "Data centers are the new polluters", Computerworld, Aug 26, 2014

P.-A. Blanche et al., "Diffraction-Based Optical Switching with MEMS", MDPI Applied Sciences, 7(4), 411 (2017).
Ghobadi, Monia, et al. "Projector: Agile reconfigurable data center interconnect." *Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference*. ACM, 2016.

For more information, contact info@postquantumtek.com

Prepared by Pierre-Alexandre Blanche, PhD